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Abstract 

A generalisation of quantum theory is presented in which the state of the universe is 
represented by a vector which varies smoothly with time. In the presence of measurements 
a smoothed-out 'collapse' takes place, while in their absence conventional Hamiltonian 
dynamics are obtained. 

1. Introduction 

In this note we present one way in which quantum theory can be 
'universalised' into a form suitable for cosmological applications, restricting 
the discussion to a brief presentation of the formalism. A comparison with 
the Wheeler-Everett  interpretation together with a consideration of the 
objections to 'collapse' and of the broader issues involved will be published 
elsewhere (Clarke, 1973). 

It  will be shown that it is possible to generalise quantum theory (in the 
sense that an orthodox quantum theory of small systems is contained as a 
special case) into a complete theory with the following properties. 

I. There is a cosmic time t such that for each value of t the universe 
has a definite 'state'  described by a vector ~ ( t ) ~  V, where V is a 
Banach space. 

II. r  is a continuous function of  t. 
III.  I f  t2 - tl = t > 0 then ~(t2) is determined by a conditional prob- 

ability measure Pt(A[~(q)),  where, for each �9 E V, Pt(. I~) is a 
probability measure on the o'-algebra ~ v  generated by the cylinder- 
sets of  V. 

IV. I f  Pt(- I ~)  for t > 0 is absolutely continuous with respect to a fixed 
standard measure/~, then its Radon-Nikodym derivative q satisfies 

d q = L q  
dt 
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where L is a second-order differential operator depending only on ~b. 
V. limPt(Al~) = Xa(~). 

t->O 

Remark. The interpretation IlI may give rise to difficulties, since the 
'probability' of the universe having a certain state is not a testable quantity: 
probability statements should be confined to ensembles within the universe. 
It is shown in Clarke (1973), by adopting an idea due to Everett (Everett, 
1957) that in an infinite universe it is sufficient to take: 

III'. The interpretation of P is as follows. If  at time t~ the universe is in 
a state ~ ,  then a class of states A ~ ~v  with #(A)r  0 is to be 
regarded as possible at time t~ + t if, and only if, Pt(A 1 q~) ~ O. 

However, in an infinite universe it is not clear that the equation in IV 
above has any solutions, and so we only consider the finite case. 

2. General ldeas 

We construct the theory by adopting the 'collapse of the wave-packet' 
doctrine in its most naive form, and supplying an explicit description of 
how the wave-packet collapses. We require, as in II above, that this 
description be continuous, so that we assign a characteristic time-scale Zo 
to a particular collapse. 

Continuity is adopted because in cosmology we cannot hope for a neat 
division of all physical situations at all times into those which can be called 
'measurements with macroscopic apparatus' and those which cannot be so 
designated. We thereby allow a continuous gradation between 'classical 
measurements' (zo very small) and 'non-measurement interactions' (vo very 
large, no collapse takes place). 

The theory is incomplete as far as its explicit statement is concerned, in 
that no criterion is known at present for this 'measurement-hess' of a 
situation. Thus there appears an unspecified function S(4~) which defines 
for any given state of the universe ~, what 'measurements', in a general 
sense, are going on and what the zo is that is associated with each. It is 
reasonable to expect that S can be defined, because the formalism itself 
ensures that ~ is (almost) always interpretable as a definite macroscopic 
state and (almost) never describes a superposition of macroscopically 
distinguishable states. 

The lack of a criterion as to what is and what is not a measurement is an 
essential problem in all attempts to generalise quantum theory to a cosmo- 
logical setting, a problem which we in no way solve. What is done is to 
pave the way for the incorporation of a quantitatively graded solution, 
instead of demanding a 'yes' or 'no' answer. As has been shown in Clarke 
(1973) the necessity for such a graded solution only arises in theories which 
satisfy I above. The Wheeler-Everett (Everett, 1957) interpretation does 
not fall into this category, and so does not have to incorporate the sort of 
collapse mechanism we shall describe. 
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3. Smoothing the Collapse 

We start from a conventional quantum system, with a Hilbert space 
and Hamiltonian H, and look for a natural way of  describing how a measure- 
ment causing a collapse could be spread out over an interval of time %. One 
possibility can immediately be dismissed: that of  taking repeated measure- 
ments at times zo/N, 2zo/N, . . . ,  Zo and letting N - +  % for the first 
measurement produces a total collapse and subsequent ones serve only to 
maintain the state in an eigenvector. But we could apply the idea if each 
measurement produced something less than a total collapse, which can 
indeed be achieved by using 'mixed measurements' (Giles, 1970). 

Originally this concept was introduced in a 'quantum logic' type of 
setting, differing radically from ours. Thus we borrow the formalism only 
and endow it with a somewhat non-standard interpretation. First we 
describe Giles's original idea. 

We recall that a mixed state �9 is represented by a compact Hermitian 
operator of  unit trace; V will be defined as the set of  all compact Hermitian 
operators of trace class. Thus ~(q)) = ~a ~.(~,(P)P. or �9 = ~ P a [ ~ ] ,  
where [~] denotes the projection on ~O. We normalise through 
(0., ~O.) = ~ .  Pa = 1. One could interpret �9 as an expression of  the know- 
ledge that the state ~.  is present with probabil i typ,  for all a. A state of the 
form [~] is a pure state. 

A test is a special case of a measurement which can only yield the out- 
comes 0 or 1. Thus it is represented by a projection operator P, and when 

is measured the result 0 .1)  is obtained with 

(probability of 1) = ~ P.(0.,  P~k~) = TrP~b 

Now consider the example (due to Giles) of a photon-counter set up to 
count right-polarised photons, so realising the measurement described by 
a projection Pr. In reality a fraction 8 of  right-polarised photons will always 
escape undetected, while a fraction 6 of  left-polarised ones will accidentally 
trigger the counter, so that the probability of  response to a state ~ is 
actually p = (1 - e)TrPr �9 + 6TrP~ (b where P~ is the left-photon projec- 
tion. We define R to be (1 - e)Pr + 6P~ so that p = TrR~b:R is called a 
mixed test, and describes an imperfect measurement. In general we define 
a mixed test R to be a Hermitian operator with spectrum in [0,1 ], interpreted 
by setting 

probability &response in state # = T r R #  (3.1) 

A collection R = {R'le = 1,2,... ,n} of  commuting mixed tests is called a 
mixed measurement. We are here splitting a measurement with a finite set 
of outcomes into a sequence of  yes]no tests. The outcome of such a 
measurement is a sequence h = (h'[c~ = 1 . . . .  ,n) with h" ~ {0,1}. 

We now interpret this concept to apply in the situation of  I, producing 
a collapse. Suppose that one mixed measurement is followed by another, 
so that the first can be regarded as a 'preparation' for the second. Then the 
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results will be consistent if the first measurement is regarded as producing 
the collapse 

q~ ---> R ' i n  q~R ' ln /Tr  R '  ~ (3.2) 
where 

kuj ) ~j 
~=1 1=1 

the R '~ having spectral resolutions~ 

/tl~t 

R '~=  ~, a's'P3 ~ (3.3) 
.1=1 

and being defined by R '~=(2h ~ -  1 ) R ~ + ( 1 - h ~ ) I  so that R '~ is the 
experiment from the pair (R ~, I -  R~), which results in success. 

Note that, from some conventional points of  view, this might be regarded 
as being partly a quantum collapse and partly an increase in information. 

In the limit when R is a pure test (e = 6 = 0 in the example) this is the 
conventional collapse in 'density matrix' form, while in the limit R ~ -+ / ,  
when the measurement yields no information at all (~ = 6 = ) in the 
example), the state is unchanged. Thus R meets our requirements for a 
partial collapse, and we can use it to construct a smoothed collapse in the 
way already indicated. 

Define 
mat 

where the spectral resolution of R ~ is defined similarly to (3.3). Perform 
measurements with the mixed measurement R , = { / ~ [ e =  1,...,n} at 
intervals of % / N  over a time-span t. The eventual state after this span 
depends on the results of the measurements which, e x  hypothesi ,  are 
assigned probabilities by (3.1), so that we obtain a probability distribution 
for the final state. In effect, the state q~ executes a random walk, taking one 
step at each measurement. The distribution has a limit v as N - +  % and 
the usual theory of random walks shows that if this limit is suitably smooth 
it satisfies 

where Lax is the Lie derivative with respect to X, defined by 

(s x p) (A) = lim ((1 I t)  (,o(14) - p(q~tl(A)))  
b--*O 

with ~o, a 1-parameter family of diffeomorphisms generating X, and we set 

X ~ = [S~,~]+[~, c ~ --- Tr  q)S~/Tr q), S ~ -= 2 R I  ~ - I 

t We shall assume that the R ~ have discrete spectra, and generalise to continuous 
spectra at the end. 
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writing AIB ~ T~(V) for  the tangent  vector  at  B parallel  to A when A , B  ~ V. 
In  deriving this we have d ropped  the normal isa t ion  condit ion Tr  # = 1. 
In  the limit ~o-+  0 we obtain  the usual collapse, at  least in the finite 
dimensional  case. 

We can incorpora te  the Hami l ton ian  evolution on recalling that  in the 
absence o f  measurements  

~b(t + "r) = # ( t )  + [ e ,  #( t ) ]  z/ih + O(z 2) 

In  terms o f  the present  picture, the Hami l ton ian  supplies a systematic drift 
o f  the probabi l i ty  distr ibution described by  the vector  Z = [H, ~(t)]/ihl~ 
which is added to the r andom-wa lk  behaviour .  This drift is responsible for  
the usual quan tum phenomena  (interference and so on), while the r a n d o m  
walk describes measurements .y  As a result, we take for  the equat ion of  
mo t ion  

d 
~ P , ( .  14~) = [/(qa+s) - -Wz]P,(. 14~1) (3.4) 

Here,  as a l ready described, we suppose tha t  R includes all the measurements  
and is specified by  giving S as a funct ion of  4~. 

The restrictions on the spectra of  the R ~ and the finite range o f  ~ can now 
be relaxed provided tha t  the r ight-hand side of  (3.4) remains defined. 
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t The reactions of some critics make it necessary to stress that I am not replacing the 
wave-function by a probability distribution over the values of observables, which would, 
of course, make 'interference' impossible. In fact, in the limit To ---'- ~ (no measurements), 
v becomes a ~-ftmction whose support describes precisely the path predicted by con- 
ventional quantum mechanics. 


